5 years ago

Intracellular Proteolytic Disassembly of Self-Quenched Near-Infrared Nanoparticles Turning Fluorescence on for Tumor-Targeted Imaging

Intracellular Proteolytic Disassembly of Self-Quenched Near-Infrared Nanoparticles Turning Fluorescence on for Tumor-Targeted Imaging
Zhibin Zhao, Jinhui Jiang, Hongyong Wang, Gaolin Liang, Zijuan Hai
The design of tumor-targeting, intracellular protease-activatable near-infrared fluorescence (NIRF) nanoprobes is broadly interesting but remains challenging. In this work, we report the rational design of a NIR probe Cys(StBu)-Lys(Biotin)-Lys-Lys(Cy5.5)-CBT (1) to facilely prepare the self-quenched nanoparticles 1-NPs for tumor-targeted imaging in vitro and in vivo. The biotinylated 1-NPs could be actively uptaken by biotin receptor-overexpressing tumor cells via receptor-mediated endocytosis. Upon intracellular proteolytic cleavage, 1-NPs were disassembled to yield the small molecular probe Lys(Cy5.5)-Luciferin-Lys(Biotin)-Lys-OH (1-D-cleaved), accompanied by fluorescence “Turn-On”. With this NIRF “Turn-On” property, 1-NPs were successfully applied for tumor-targeted imaging. We envision that our nanoparticles could be applied for fluorescence-guided tumor surgery in the near future.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02971

DOI: 10.1021/acs.analchem.7b02971

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.