4 years ago

The NO-heme signaling hypothesis

The NO-heme signaling hypothesis
While the biological role of nitric oxide (NO) synthase (NOS) is appreciated, several fundamental aspects of the NOS/NO-related signaling pathway(s) remain incompletely understood. Canonically, the NOS-derived NO diffuses through the (inter)cellular milieu to bind the prosthetic ferro(Fe2+)-heme group of the soluble guanylyl cyclase (sGC). The formation of ternary NO-ferroheme-sGC complex results in the enzyme activation and accelerated production of the second messenger, cyclic GMP. This paper argues that cells dynamically generate mobile/exchangeable NO-ferroheme species, which activate sGC and regulate the function of some other biomolecules. In contrast to free NO, the mobile NO-ferroheme may ensure safe, efficient and coordinated delivery of the signal within and between cells. The NO-heme signaling may contribute to a number of NOS/NO-related phenomena (e.g. nitrite bioactivity, selective protein S-(N-)nitrosation, endothelium and erythrocyte-dependent vasodilation, some neural and immune NOS functions) and predicts new NO-related discoveries, diagnostics and therapeutics.

Publisher URL: www.sciencedirect.com/science

DOI: S0891584917307414

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.