5 years ago

Oxidation and Reduction of TiOx Thin Films on Pd(111) and Pd(100)

Oxidation and Reduction of TiOx Thin Films on Pd(111) and Pd(100)
M. H. Farstad, A. Borg, A. Sandell, D. Ragazzon, J. Gustafson, M. D. Strømsheim
Thin films of TiOx on Pd(100) and Pd(111) have been investigated with respect to their properties after oxidation and reduction cycles. High-resolution photoemission spectroscopy (HRPES) and low energy electron diffraction (LEED) have been applied to characterize the thin film oxidation states and structure before and after oxidation and reduction under ultrahigh vacuum conditions. Fully oxidized TiO2 films were formed on both surfaces. These structures display Moiré patterns in LEED, in one dimension for Pd(100) and in two dimensions for Pd(111), and they have previously not been reported for TiO2/Pd. The oxidation process causes strong reduction in the interaction between the oxide thin film and the Pd substrate, most significantly for Pd(111). Reversible oxidation/reduction cycling of TiOx thin films on Pd(111) and Pd(100) was possible.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b06282

DOI: 10.1021/acs.jpcb.7b06282

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.