5 years ago

Metal-organic frameworks as efficient catalytic systems for the synthesis of 1,5-benzodiazepines from 1,2-phenylenediamine and ketones

Metal-organic frameworks as efficient catalytic systems for the synthesis of 1,5-benzodiazepines from 1,2-phenylenediamine and ketones
Benzodiazepines and their derivatives are a very important class of nitrogen-containing heterocyclic compounds with biological activity that are widely used in medicine. In this study, we demonstrated synthesis of 1,5-benzodiazepines from 1,2-phenylenediamine and ketones (acetone, cyclohexanone, acetophenone, methyl ethyl ketone) in the presence of isostructural porous metal-benzenetricarboxylates of the families MIL-100(M) (M: V3+, Al3+, Fe3+ and Cr3+) and three porous aluminium trimesates Al-BTCs (MIL-96(Al), MIL-100(Al) and MIL-110(Al)). A combination of catalytic, theoretical and physicochemical methods showed that reaction rates and yields of 1,5-benzodiazepines were adjusted by the type of metal ions and accessibility of active sites. The yield of 1,5-benzodiazepines in the presence of MIL-100(M) was comparable with zeolites, such as HY, H-ZSM−5, β-zeolite and heulandite.

Publisher URL: www.sciencedirect.com/science

DOI: S0021951717302944

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.