5 years ago

Microtubular Fuel Cell with Ultrahigh Power Output per Footprint

Microtubular Fuel Cell with Ultrahigh Power Output per Footprint
Mengnan Liang, Bin Cai, Gungun Lin, Shiding Miao, Shulian He, Oliver G. Schmidt
A novel realization of microtubular direct methanol fuel cells (µDMFC) with ultrahigh power output is reported by using “rolled-up” nanotechnology. The microtube (Pt-RuO2-RUMT) is prepared by rolling up Ru2O layers coated with magnetron-sputtered Pt nanoparticles (cat-NPs). The µDMFC is fabricated by embedding the tube in a fluidic cell. The footprint of per tube is as small as 1.5 × 10−4 cm2. A power density of ≈257 mW cm−2 is obtained, which is three orders of magnitude higher than the present microsized DFMCs. Atomic layer deposition technique is applied to alleviate the methanol crossover as well as improve stability of the tube, sustaining electrolyte flow for days. A laminar flow driven mechanism is proposed, and the kinetics of the fuel oxidation depends on a linear-diffusion-controlled process. The electrocatalytic performance on anode and cathode is studied by scanning both sides of the tube wall as an ex situ working electrode, respectively. This prototype µDFMC is extremely interesting for integration with micro- and nanoelectronics systems. A novel realization of microdirect methanol fuel cells (µDMFC) is presented by utilizing rolled-up nanotechnology. A power density of 257 mW cm−2 is obtained, which is three orders of magnitude higher than that of previously reported µDMFCs.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201607046

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.