5 years ago

Rational design of carbon-doped TiO2 modified g-C3N4 via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability

Rational design of carbon-doped TiO2 modified g-C3N4 via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability
Graphitic carbon nitride (g-C3N4) photocatalysts have attracted much attention towards harvesting solar energy for applications in energy and environment sectors. However, separation of electron-hole pairs is an intrinsic problem for the bulk g-C3N4. Here, we report the tiny amount of carbon doped TiO2 modified g-C3N4 (C-TiO2/g-C3N4) with a narrow bandgap and prolonged lifetime of charge carriers. This heterojunction photocatalysts were successfully fabricated via a facile heat treatment under atmosphere. The enhanced separation of photogenerated charge carriers and narrow band gap confer superior photocatalytic activities with 5.728mmol/g photogenerated hydrogen gas for 5h and 52.395mmol/g for 64h in triethanolamine aqueous solution. The apparent quantum efficiency of C-TiO2/g-C3N4 is ~6.2% under 420nm irradiation, which is about 2.4 times higher than the corresponding value 2.6% of pristine g-C3N4. This photocatalyst with excellent photocatalytic performance and photo-stability can work as a promising candidate to applicate in solar-to-fuel conversion and environmental remediation.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517305505

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.