3 years ago

New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis

New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis
Water electrolysis is a very promising technology for sustainable hydrogen generation using renewable electrical energy. The excellent performance and dynamic behavior for storing electrical energy in hydrogen allow polymer electrolyte membrane (PEM) electrolysis to cover the gap between the intermittent renewable power production and the grid demand at different time horizons and scales. This work is addressed to the development and characterization of high performance nanostructured Ir-Ru-oxide electro-catalyst achieving for the rate determining oxygen evolution reaction a current density of 3Acm−2 at about 1.8V (>80% enthalpy efficiency) with a low catalyst loading (0.34mgcm−2). The stability characteristics were studied in practical PEM electrolysis cells operating at 80°C, using several durability tests of 1000h each to evaluate the reliability of this electro-catalyst for real-life operation. Further insights on the degradation mechanism were acquired by subjecting the catalyst to potential steps in a specially designed electrochemical flow cell under corrosive liquid electrolyte with on-line monitoring of the dissolved ions. Structural, morphology, composition and surface analysis of the anode electro-catalyst after operation in the electrolysis cell, complemented by in-situ electrochemical diagnostics, provided important insights into the degradation mechanisms. Catalyst operation at high turnover frequency (TOF) was observed to cause a progressive change of Lewis acidity characteristics with time for both Ir and Ru cations thus influencing their ability to promote water oxidation.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517305529

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.