5 years ago

Acoustic mirrors as sensory traps for bats

Björn M. Siemers, Sándor Zsebők, Daniela Schmieder, Stefan Greif

Sensory traps pose a considerable and often fatal risk for animals, leading them to misinterpret their environment. Bats predominantly rely on their echolocation system to forage, orientate, and navigate. We found that bats can mistake smooth, vertical surfaces as clear flight paths, repeatedly colliding with them, likely as a result of their acoustic mirror properties. The probability of collision is influenced by the number of echolocation calls and by the amount of time spent in front of the surface. The echolocation call analysis corroborates that bats perceive smooth, vertical surfaces as open flyways. Reporting on occurrences with different species in the wild, we argue that it is necessary to more closely monitor potentially dangerous locations with acoustic mirror properties (such as glass fronts) to assess the true frequency of fatalities around these sensory traps.

Publisher URL: http://science.sciencemag.org/cgi/content/short/357/6355/1045

DOI: 10.1126/science.aam7817

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.