5 years ago

Chloride Oxidation by Ruthenium Excited-States in Solution

Chloride Oxidation by Ruthenium Excited-States in Solution
Ludovic Troian-Gautier, Guocan Li, Gerald J. Meyer, Sara A. M. Wehlin
Photodriven HCl splitting to produce solar fuels is an important goal that requires strong photo-oxidants capable of chloride oxidation. In a molecular approach toward this goal, three ruthenium compounds with 2,2′-bipyrazine backbones were found to oxidize chloride ions in acetone solution. Nanosecond transient absorption measurements provide compelling evidence for excited-state electron transfer from chloride to the Ru metal center with rate constants in excess of 1010 M–1 s–1. The Cl atom product was trapped with an olefin. This reactivity was promoted through pre-organization of ground-state precursors in ion pairs. Chloride oxidation with a tetra-cationic ruthenium complex was most favorable, as the dicationic complexes were susceptible to photochemical ligand loss. Marcus analysis afforded an estimate of the chlorine formal reduction potential E°(Cl•/–) = 1.87 V vs NHE that is at least 300 meV more favorable than the accepted values in water.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06762

DOI: 10.1021/jacs.7b06762

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.