4 years ago

Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers

Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers
Zheng Liu, Zheyu Fang, Xing Zhu, Shuai Zu, Yang Luo, Qiao Jiang, Hangyong Shan, Bowen Du, Bowen Li, Jiadong Zhou
The manipulation of light in an integrated circuit is crucial for the development of high-speed electro-optic devices. Recently, molybdenum disulfide (MoS2) monolayers generated broad interest for the optoelectronics because of their huge exciton binding energy, tunable optical emission, direct electronic band-gap structure, etc. Miniaturization and multifunctionality of electro-optic devices further require the manipulation of light–matter interaction at the single-nanoparticle level. The strong exciton–plasmon interaction that is generated between the MoS2 monolayers and metallic nanostructures may be a possible solution for compact electro-optic devices at the nanoscale. Here, we demonstrate a nanoplasmonic modulator in the visible spectral region by combining the MoS2 monolayers with a single Au nanodisk. The narrow MoS2 excitons coupled with broad Au plasmons result in a deep Fano resonance, which can be switched on and off by applying different gate voltages on the MoS2 monolayers. A reversible display device that is based on this single-nanoparticle modulator is demonstrated with a heptamer pattern that is actively controlled by the external gates. Our work provides a potential application for electro-optic modulation on the nanoscale and promotes the development of gate-tunable nanoplasmonic devices in the future.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b05479

DOI: 10.1021/acsnano.7b05479

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.