3 years ago

Structural Transformation of Li-Excess Cathode Materials via Facile Preparation and Assembly of Sonication-Induced Colloidal Nanocrystals for Enhanced Lithium Storage Performance

Structural Transformation of Li-Excess Cathode Materials via Facile Preparation and Assembly of Sonication-Induced Colloidal Nanocrystals for Enhanced Lithium Storage Performance
Jianqing Zhao, Ying Wang, Jieyu Zhou, Qinglin Wu, Lijun Gao, Xiaoxiao Kuai, Yiying Yue, Ruiming Huang, Michele Pavanello, Pablo Ramos, Huixin He
A surfactant-free sonication-induced route is developed to facilely prepare colloidal nanocrystals of Li-excess layered Li1.2Mn0.54Ni0.13Co0.13O2 (marked as LMNCO) material. The sonication process plays a critical role in forming LMNCO nanocrystals in ethanol (ethanol molecules marked as EtOHs) and inducing the interaction between LMNCO and solvent molecules. The formation mechanism of LMNCO–EtOH supramolecules in the colloidal dispersion system is proposed and examined by the theoretical simulation and light scattering technique. It is suggested that the as-formed supramolecule is composed of numerous ethanol molecules capping the surface of the LMNCO nanocrystal core via hydrogen bonding. Such chemisorption gives rise to dielectric polarization of the absorbed ethanol molecules, resulting in a negative surface charge of LMNCO colloids. The self-assembly behaviors of colloidal LMNCO nanocrystals are then tentatively investigated by tuning the solvent evaporation condition, which results in diverse superstructures of LMNCO materials after the evaporation of ethanol. The reassembled LMNCO architectures exhibit remarkably improved capacity and cyclability in comparison with the original LMNCO particles, demonstrating a very promising cathode material for high-energy lithium-ion batteries. This work thus provides new insights into the formation and self-assembly of multiple-element complex inorganic colloids in common and surfactant-free solvents for enhanced performance in device applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09981

DOI: 10.1021/acsami.7b09981

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.