5 years ago

Rerouting Native HDL to Predetermined Receptors for Improved Tumor-Targeted Gene Silencing Therapy

Rerouting Native HDL to Predetermined Receptors for Improved Tumor-Targeted Gene Silencing Therapy
Yang Ding, Wei Wang, Ziqiang Zhao, Huaqing Zhang, Yue Han, Ruoning Wang, Jianping Zhou, Lifang Yin, Yazhe Wang, Cheng Chi
High-density lipoprotein (HDL) is an outstanding biocompatible nanovector for tumor-targeted delivery of multimodel drugs in cancer therapy. However, this seemingly promising delivery platform demonstrates an adverse accumulation in liver and adrenal due to the primary expression of natural target scavenger receptor class B type I (SR-BI), which overexpressed in malignant cells as well. Therefore, we endowed native HDLs with rerouting capacity, that is, enabling HDLs to get away from natural receptors (SR-BI) to selectively alternate tumor-rich receptors. The αvβ3-integrin specific cyclic-RGDyk peptide was conjugated with HDL-protein component apolipoprotein A-I (apoA-I), demonstrating high substitution degree of 26.2%. Afterward, RGD-modified apoA-I was introduced to fabricate cholesterol siRNA-loaded HDL nanoparticles (RGD-HDL/Ch-siRNA) for specific affinity with tumor angiogenesis and αvβ3 integrin on tumor surface. After preparation, RGD-HDL/Ch-siRNA shared desirable particle size, efficient siRNA protection during blood circulation, and favorable proton sponge effect. αvβ3 integrin-associated superior rerouting capacity, endocytosis pathway, and rapid endolysosome escape were confirmed both in vitro and in vivo. For targeted gene silencing therapy, Pokemon-specific siRNA (siPokemon) was introduced as RNA interference candidate; the enhanced antitumor efficacy and decreased Pokemon expression level were commendably confirmed by tumor growth inhibition, survival period extension, and western blot analysis. Collectively, cyclic-RGDyk modification endows native HDLs with rerouting capacity to specific αvβ3 integrin receptor, which provides a promising strategy to extend malignancy targeting potential of native HDL to a broader purview.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10047

DOI: 10.1021/acsami.7b10047

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.