3 years ago

Bioinspired “Active” Stealth Magneto-Nanomicelles for Theranostics Combining Efficient MRI and Enhanced Drug Delivery

Bioinspired “Active” Stealth Magneto-Nanomicelles for Theranostics Combining Efficient MRI and Enhanced Drug Delivery
Wei-Wen Lin, Hong Zhou, Jie Zhou, Ying Wu, Guoming Huang, Li-Li Wang, Rui Liu, Kai-Long Zhang, Huang-Hao Yang
The mononuclear phagocyte system (MPS) with key roles in recognition and clearance of foreign particles, is a major constraint to nanoparticle-based delivery systems. The desire to improve the delivery efficiency has prompted the search for stealthy long-circulating nanoplatforms. Herein, we design an antiphagocytic delivery system with “active” stealth behavior for cancer theranostics combining efficient MRI and enhanced drug delivery. We modify self-peptide, a synthetic peptide for active immunomodulation, to biodegradable poly(lactide-glycolide)–poly(ethylene glycol) (PLGA–PEG), then utilize the self-assembly properties of PLGA–PEG to form nanomicelles that encapsulating iron oxide (IO) nanoparticles and anticancer drug paclitaxel (PTX). Through the interaction of self-peptide with the receptor SIRPα, which is expressed on phagocytes, the as-prepared nanomicelles can disguise as “self” to avoid being recognized as foreign particles by MPS, leading to improved blood circulation time and delivery efficiency. Compared to the “passive” stealth effect generating by PEG or zwitterionic polymers that only passively delay the physisorption of serum proteins to nanocarriers, the “active self” nanomicelles can more efficiently inhibit the MPS-mediated immune clearance and reduce “accelerated blood clearance” phenomenon. Furthermore, this one-step clustering of IO nanoparticles and loading of PTX endow the resulted magneto-nanomicelles with enhanced T2 MRI contrast performance and antitumor effect. We believe that this study provides a novel approach in designing of efficient stealth antiphagocytic delivery systems that resisting the MPS-mediated clearance for cancer theranostics.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10086

DOI: 10.1021/acsami.7b10086

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.