3 years ago

Porous Aromatic Frameworks for Size-Selective Halogenation of Aryl Compounds

Porous Aromatic Frameworks for Size-Selective Halogenation of Aryl Compounds
Yingxi Zhou, Ye Yuan, Yajie Yang, Lili Wang, Shuai Zhao, Peng Cui, Xiaoqin Zou, Guangshan Zhu
Organic halides are vitally important chemical precursors or intermediates in the fields of agrochemical synthesis, molecular recognition, and material science. However, it is difficult to selectively synthesize these compounds due to the multiple reactive sites in aryl fragments. In this work, we prepared the first fully fluorinated porous aromatic framework (PAF). Its −C–F bond and hierarchical porosity have great benefits for PAF functionalization. After being decorated with different cyclodextrins (CDs), CD-PAF materials can incorporate diverse aryl compounds to protect their ortho sites from being attacked to produce para-substituted molecules. This selectivity obviously increased with a decrease in the substrate size (from 0.97 to 0.41 nm). In addition, the CD-PAFs can undergo long-term use in both chlorination and bromination.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10540

DOI: 10.1021/acsami.7b10540

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.