3 years ago

Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius

Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius
Ho Won Jang, Soo Young Kim, Ji Su Han, Jaeho Choi, Ki Chang Kwon, Cheon Woo Moon, Yongwoo Kwon, Pil-Ryung Cha, Kootak Hong, Quyet Van Le
It was demonstrated that organolead halide perovskites (OHPs) show a resistive switching behavior with an ultralow electric field of a few kilovolts per centimeter. However, a slow switching time and relatively short endurance remain major obstacles for the realization of the next-generation memory. Here, we report a performance-enhanced OHP resistive switching device. To fabricate topologically and electronically improved OHP thin films, we added hydroiodic acid solution (for an additive) in the precursor solution of the OHP. With drastically improved morphology such as small grain size, low peak-to-valley depth, and precise thickness, the OHP thin films showed an excellent performance as insulating layers in Ag/CH3NH3PbI3/Pt cells, with an endurance of over 103 cycles, a high on/off ratio of 106, and an operation speed of 640 μs and without electroforming. We suggest plausible resistive switching and conduction mechanisms with current–voltage characteristics measured at various temperatures and with different top electrodes and device structures. Beyond the extended endurance, highly flexible resistive switching devices with a minimum bending radius of 5 mm create opportunities for use in flexible and wearable electronic devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08197

DOI: 10.1021/acsami.7b08197

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.