4 years ago

Capping Layer (CL) Induced Antidamping in CL/Py/β-W System (CL: Al, β-Ta, Cu, β-W)

Capping Layer (CL) Induced Antidamping in CL/Py/β-W System (CL: Al, β-Ta, Cu, β-W)
Dinesh K. Pandya, Puspendu Guha, Nilamani Behera, Sujeet Chaudhary
For achieving ultrafast switching speed and minimizing dissipation losses, the spin-based data storage device requires a control on effective damping (αeff) of nanomagnetic bits. Incorporation of interfacial antidamping spin orbit torque (SOT) in spintronic devices therefore has high prospects for enhancing their performance efficiency. Clear evidence of such an interfacial antidamping is found in Al capped Py(15 nm)/β-W(tW)/Si (Py = Ni81Fe19 and tW = thickness of β-W), which is in contrast to the increase of αeff (i.e., damping) usually associated with spin pumping as seen in Py(15 nm)/β-W(tW)/Si system. Because of spin pumping, the interfacial spin mixing conductance (g↑↓) at Py/β-W interface and spin diffusion length (λSD) of β-W are found to be 1.63(±0.02) × 1018 m–2 (1.44(±0.02) × 1018 m–2) and 1.42(±0.19) nm (1.00(±0.10) nm) for Py(15 nm)/β-W(tW)/Si (β-W(tW)/Py(15 nm)/Si) bilayer systems. Other different nonmagnetic capping layers (CL), namely, β-W(2 nm), Cu(2 nm), and β-Ta(2,3,4 nm) were also grown over the same Py(15 nm)/β-W(tW). However, antidamping is seen only in β-Ta(2,3 nm)/Py(15 nm)/β-W(tW)/Si. This decrease in αeff is attributed to the interfacial Rashba like SOT generated by nonequilibrium spin accumulation subsequent to the spin pumping. Contrary to this, when interlayer positions of Py(15 nm) and β-W(tW) is interchanged irrespective of the fixed top nonmagnetic layer, an increase of αeff is observed, which is ascribed to spin pumping from Py to β-W layer.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06991

DOI: 10.1021/acsami.7b06991

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.