5 years ago

Multifunctional Yolk–Shell Nanostructure as a Superquencher for Fluorescent Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides

Multifunctional Yolk–Shell Nanostructure as a Superquencher for Fluorescent Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides
Lihua Wang, Na Lu, Abdulaziz Alrohaili, Mostafizur Rahaman, Govindasami Periyasami, Muhammad Naziruddin Khan, Ali Aldalbahi, Caixia Zeng, Gang Liu, Jiye Shi, Lei Ding, Min Zhang, Yanli Wen, Shiping Song
The excellent performance of a biosensor generally depends on the high signal-to-noise ratio, and the superquencher plays a dominant role in fluorescent sensors. Novel nanoquenchers exhibited high quenching efficiency in various fluorescent assays of biological/chemical molecules. Here, we developed a novel nano-biosensor using Fe3O4@C yolk–shell nanoparticles (YSNPs) and studied their quenching effect. We found Fe3O4@C YSNP was a superquencher and exhibited an ultrastrong quenching ability, up to almost 100% quenching efficiency, toward fluorophores. Also, Fe3O4@C YSNPs possessed the most superior fluorescence restoration efficiency, due to biomolecular recognition event, compared to the other nanoquenchers, including bare Fe3O4 NPs, graphene oxide (GO), and single-wall carbon nanotubes (SWCNTs). On the basis of that, a fluorescent sensing platform for potassium-ion (K+) analysis with guanine (G)-rich oligonucleotides was designed. As a result, Fe3O4@C YSNP-based fluorescent sensors demonstrated excellent performance, with an ultrahigh sensitivity of a detection limit as low as 1.3 μM, as well as a wide dynamic range from 50 μM to 10 mM. The proposed method is fast, simple, and cost-effective, suggesting the great potential for practical applications in biomedical detection and clinical diagnosis.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08732

DOI: 10.1021/acsami.7b08732

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.