5 years ago

Halide Welding for Silver Nanowire Network Electrode

Halide Welding for Silver Nanowire Network Electrode
Jeong Ho Cho, Siuk Cheon, Gi-Ra Yi, Yeontae Kim, Hyungseok Kang
We developed a method of chemically welding silver nanowires (AgNWs) using an aqueous solution containing sodium halide salts (NaF, NaCl, NaBr, or NaI). The halide welding was performed simply by immersing the as-coated AgNW film into the sodium halide solution, and the resulting material was compared with those obtained using two typical thermal and plasmonic welding techniques. The halide welding dramatically reduced the sheet resistance of the AgNW electrode because of the strong fusion among nanowires at each junction while preserving the optical transmittance. The dramatic decrease in the sheet resistance was attributed to the autocatalytic addition of dissolved silver ions to the nanowire junction. Unlike thermal and plasmonic welding methods, the halide welding could be applied to AgNW films with a variety of deposition densities because the halide ions uniformly contacted the surface or junction regions. The optimized AgNW electrodes exhibited a sheet resistance of 9.3 Ω/sq at an optical transmittance of 92%. The halide welding significantly enhanced the mechanical flexibility of the electrode compared with the as-coated AgNWs. The halide-welded AgNWs were successfully used as source–drain electrodes in a transparent and flexible organic field-effect transistor (OFET). This simple, low-cost, and low-power consumption halide welding technique provides an innovative approach to preparing transparent electrodes for use in next-generation flexible optoelectronic devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09839

DOI: 10.1021/acsami.7b09839

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.