3 years ago

Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect

Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect
Yuyi Liu, Shuoyu Li, Chengxin Wang, Peisheng Guo
Transition metal oxide nanoparticles capsuled in amorphous carbon nanotubes (ACNTs) are attractive anode materials of lithium-ion batteries (LIBs). Here, we first designed a fast and universal method with a hydromechanics conception which is called Marangoni flow to fabricate transition bimetal oxides (TBOs) in the ACNT composite with a better electrochemistry performance. Marangoni flows can produce a liquid column with several centimeters of height in a tube with one side immersed in the liquid. The key point to induce a Marangoni flow is to make a gradient of the surface tension between the surface and the inside of the solution. With our research, we control the gradient of the surface tension by controlling the viscosity of a solution. To show how our method could be generally used, we synthesize two anode materials such as (a) CoFe2O4@ACNTs, and (b) NiFe2O4@ACNTs. All of these have a similar morphology which is ∼20 μm length with a diameter of 80–100 nm for the ACNTs, and the particles (inside the ACNTs) are smaller than 5 nm. In particular, there are amorphous carbons between the nanoparticles. All of the composite materials showed an outstanding electrochemistry performance which includes a high capacity and cycling stability so that after 600 cycles the capacity changed by less than 3%.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08225

DOI: 10.1021/acsami.7b08225

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.