3 years ago

B, N co-doped carbon from cross-linking induced self-organization of boronate polymer for supercapacitor and oxygen reduction reaction

B, N co-doped carbon from cross-linking induced self-organization of boronate polymer for supercapacitor and oxygen reduction reaction
A novel strategy has been developed to generate B, N co-doped carbon materials (CNBs) through the pyrolysis of boronate polymer nanoparticles (BPNs) derived from the condensation reaction between catechol and boronic monomers. The morphology, surface area and heteroatom (viz. B and N) content of the CNBs can be easily adjusted by altering the molar ratio between catechol and boronic monomers. The supercapacitor and oxygen reduction reaction (ORR) performance of the CNBs are optimized. CNBs derived from equal molar ratio of catechol and boronic monomers exhibit favorable performance for supercapacitor, featuring a specific capacitance of up to 299.4 F/g at 0.2 A/g, an improved rate capability and excellent cycle stability. Notably, CNBs prepared using 1/2 molar ratio of catechol to boronic monomers show excellent ORR performance, as they demonstrate good electrocatalytic activity, high tolerance for methanol and long durability. Our findings may be of interest in the design of carbon materials with optimized electrochemical properties through the control over surface area and the content of heteroatom.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317311394

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.