5 years ago

MGL-1 on AIY neurons translates starvation to reproductive plasticity via neuropeptide signaling in Caenorhabditis elegans

Reproductive plasticity is the ability of an animal to modulate its reproductive functions in response to environmental changes. For example, Caenorhabditis elegans, a free-living nematode, can adjust the onsets of oogenesis and embryogenesis under harsh environmental conditions, including starvation. However, the molecular mechanisms used to perceive and translate environmental signals into reproductive functional adjustments remain largely uncharacterized. We discovered that in C. elegans, the glutamate receptor homolog MGL-1 initiated reproductive plasticity in response to starvation. A genetic analysis of the mutant gene, mgl-1(tm1811), suggested that starvation delayed the onsets of oogenesis and embryogenesis via MGL-1. Cell-specific rescues of mgl-1 deletion mutants, which used transgenic lines designed to express MGL-1 in different neurons (e.g., RMD, AIA, AIY, and NSM), suggested that only AIY-rescued animals exhibited normal delays in oogenesis and embryogenesis equivalent to those of wild-type animals, suggesting recovery. Furthermore, in AIY neurons, MGL-1 appears to use neuropeptide signaling, rather than glutamate, to translate starvation stimuli into delayed oogenesis and embryogenesis. Our findings, which reveal molecular linkages between starvation signals and reproductive alterations, may provide a basis for understanding energy reallocation mechanisms, as the mgl-1 deletion mutant exhibited more severe reductions in lifespan and fat accumulation than did wild-type animals under starvation conditions. Taken together, MGL-1 is the molecular driver underlying the translation of starvation signals to reproduction plasticity in an AIY neuron-specific manner.

Publisher URL: www.sciencedirect.com/science

DOI: S0012160617304906

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.