Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line
Abstract
Key message
Transcriptome data were used to develop 134 Aegilops longissima specific PCR markers and their comparative maps were constructed by contrasting with the homologous genes in the wheat B genome. Three wheat– Ae. longissima 1BL·1S l S translocation lines were identified using the correspondence markers.
Abstract
Aegilops longissima is an important wild species of common wheat that harbors many genes that can be used to improve various traits of common wheat (Triticum aestivum L.). To efficiently transfer the traits conferred by these Ae. longissima genes into wheat, we sequenced the whole expression transcript of Ae. longissima. Using the transcriptome data, we developed 134 specific polymerase chain reaction markers located on the 14 chromosome arms of Ae. longissima. These novel molecular markers were assigned to specific chromosome locations based on a comparison with the homologous genes in the B genome of wheat. Annotation of these genes showed that most had functions related to metabolic processes, hydrolase activity, or catalytic activity. Additionally, we used these markers to identify three wheat–Ae. longissima 1BL·1SlS translocation lines in somatic variation populations resulting from a cross between wheat cultivar Westonia and a wheat–Ae. longissima substitution line 1Sl(1B). The translocation lines had several low molecular weight glutenin subunits encoding genes beneficial to flour processing quality that came from Ae. longissima 1SlS. The three translocation lines were also confirmed by genomic in situ hybridization. These translocation lines will be further evaluated for potential quality improvement of bread-making properties of wheat.
Publisher URL: https://link.springer.com/article/10.1007/s00122-017-2982-5
DOI: 10.1007/s00122-017-2982-5
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.