5 years ago

Nanoscale symmetry fluctuations in ferroelectric barium titanate, BaTiO3

Nanoscale symmetry fluctuations in ferroelectric barium titanate, BaTiO3
Yu-Tsun Shao, Jian-Min Zuo
Crystal charge density is a ground-state electronic property. In ferroelectrics, charge is strongly influenced by lattice and vice versa, leading to a range of interesting temperature-dependent physical properties. However, experimental determination of charge in ferroelectrics is challenging because of the formation of ferroelectric domains. Demonstrated here is the scanning convergent-beam electron diffraction (SCBED) technique that can be simultaneously used for imaging ferroelectric domains and identifying crystal symmetry and its fluctuations. Results from SCBED confirm the acentric tetragonal, orthorhombic and rhombohedral symmetry for the ferroelectric phases of BaTiO3. However, the symmetry is not homogeneous; regions of a few tens of nanometres retaining almost perfect symmetry are interspersed in regions of lower symmetry. While the observed highest symmetry is consistent with the displacive model of ferroelectric phase transitions in BaTiO3, the observed nanoscale symmetry fluctuations are consistent with the predictions of the order–disorder phase-transition mechanism.The crystal symmetry of ferroelectric BaTiO3 is determined by scanning convergent-beam electron diffraction. The results show inhomogeneous symmetry with nanometre-sized regions of almost perfect symmetry interspersed in regions of lower symmetry.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1107/S2052520617008496

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.