4 years ago

Numerical Analysis of Heat Transfer Mechanism of Thermal Runaway Propagation for Cylindrical Lithium-ion Cells in Battery Module

Numerical Analysis of Heat Transfer Mechanism of Thermal Runaway Propagation for Cylindrical Lithium-ion Cells in Battery Module
Tang, Song, Wang, Cheng, Tao
An electrochemical-thermal coupling model combined with an electrically connected cylindrical cell model was built to produce a structural design that prevents thermal runaway propagation of cells on the battery module. Additionally, the characteristics of different modes of heat transfer of each cell during thermal runaway propagation of the battery module in an open environment were studied by changing the spacing of adjacent cells, the solder joint area, and the cross-sectional area of the electrode tab. Heat conduction is usually the main heat transfer mode for cells directly connected to the thermal runaway cell, while radiation heat transfer is the main heat exchange mode for cells that are not directly connected to thermal runaway cell. Increasing spacing can prevent thermal runaway propagation by the three heat transfer modes. Similarly, a smaller total solder joint area and cross-sectional area of the electrode tab can inhibit thermal runaway propagation through heat conduction transfer modes if conditions permit.

Publisher URL: https://www.mdpi.com/1996-1073/13/4/1010

DOI: 10.3390/en13041010

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.