5 years ago

Poly (I:C) impairs NO donor-induced relaxation by overexposure to NO via the NF-kappa B/iNOS pathway in rat superior mesenteric arteries

Poly (I:C) impairs NO donor-induced relaxation by overexposure to NO via the NF-kappa B/iNOS pathway in rat superior mesenteric arteries
Recent studies have suggested a link between vascular dysfunction and innate immune activation including toll-like receptors (TLRs), but the detailed mechanism remains unclear. Here we investigated whether poly (I:C) [a synthetic double-strand RNA recognized by TLR3, melanoma differentiation-associated gene 5 (MDA5), and retinoic acid-inducible gene I (RIG-I)] affected nitric oxide (NO)/cGMP-related vascular relaxation, one of the major cascades of relaxation, in rat superior mesenteric arteries. Using organ-cultured arteries, we found that poly (I:C) (30μg/mL for approximately 1 day) markedly reduced sodium nitroprusside (SNP)-induced relaxation (vs. vehicle); this was prevented by co-treatment with a TLR3 inhibitor. Relaxation induced by 8-Br cGMP (a phosphodiesterase (PDE)-resistant cGMP analogue) and the expression of proteins related to NO/cGMP signaling did not differ between vehicle- and poly (I:C)-treated groups. When PDEs were inhibited by IBMX (a nonselective PDE inhibitor), the SNP-induced relaxation was still greatly reduced in poly (I:C)-treated arteries (vs. vehicle). Poly (I:C) reduced SNP-stimulated cGMP production, but increased NO production and iNOS expression (vs. vehicle). The impairment of SNP-induced relaxation by poly (I:C) was prevented by co-treatment with either iNOS or a nuclear factor-kappa B (NF-κB) inhibitor. This effect induced by poly (I:C) appeared to be independent of oxidative stress. The SNP-induced relaxation was reduced in freshly isolated arteries by pre-incubation with SNP in a concentration-dependent manner. Poly (I:C) did not alter protein levels of TLR3, TRIF/TICAM-1, or phospho-IRF3/IRF3, whereas RIG-I and MDA5 were significantly upregulated (vs. vehicle). These results suggest that poly (I:C) impairs NO donor-induced relaxation in rat superior mesenteric arteries via overexposure to NO produced by the NF-κB/iNOS pathway.

Publisher URL: www.sciencedirect.com/science

DOI: S0891584917307438

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.