5 years ago

Electrochemical recognition of tryptophan enantiomers using self-assembled diphenylalanine structures induced by graphene quantum dots, chitosan and CTAB

Electrochemical recognition of tryptophan enantiomers using self-assembled diphenylalanine structures induced by graphene quantum dots, chitosan and CTAB
Molecular self-assembly offers a promising route to the preparation of advanced materials for the construction of novel chiral sensing devices, and the inspiration for the development of such systems is often derived from simple biological models. Diphenylalanine (FF), an extensively studied short peptide, can self-assemble into highly ordered nano-/micro-structures. Here we report the electrochemical recognition of tryptophan enantiomers using three FF self-assembled structures produced in the presence of graphene quantum dots (GQDs), chitosan (CS) and cetyltrimethylammonium bromide (CTAB). Although the difference in the peak potentials of the enantiomers is very small, enantiomeric differences can be detected by the magnitude of the DPV current signals. The recognition efficiencies of the three self-assembled materials are different, due to the different structures formed during the self-assembly process.

Publisher URL: www.sciencedirect.com/science

DOI: S1388248117302448

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.