5 years ago

SiO2/TiO2 Composite Film for High Capacity and Excellent Cycling Stability in Lithium-Ion Battery Anodes

SiO2/TiO2 Composite Film for High Capacity and Excellent Cycling Stability in Lithium-Ion Battery Anodes
Gibaek Lee, Jinsub Choi, Sunkyu Kim, Sudeok Kim
In this study, partially crystalline anodic TiO2 with SiO2 well-distributed througout the entire oxide film is prepared using plasma electrolytic oxidation (PEO) to obtain a high-capacity anode with an excellent cycling stability for Li-ion batteries. The micropore sizes in the anodic film become inhomogeneous as the SiO2 content is increased from 0% to 25%. The X-ray diffraction peaks show that the formed oxide contains the anatase and rutile phases of TiO2. In addition, X-ray photoelectron spectroscopy and energy-dispersive X-ray analyses confirm that TiO2 contains amorphous SiO2. Anodic oxides of the SiO2/TiO2 composite prepared by PEO in 0.2 m H2SO4 and 0.4 m Na2SiO3 electrolyte deliver the best performance in Li-ion batteries, exhibiting a capacity of 240 µAh cm−2 at a fairly high current density of 500 µA cm–2. The composite film shows the typical Li–TiO2 and Li–SiO2 redox peaks in the cyclic voltammogram and a corresponding plateau in the galvanostatic charge/discharge curves. The as-prepared SiO2/TiO2 composite anode shows at least twice the capacity of other types of binder-free TiO2 and TiO2 composites and very stable cycling stability for more than 250 cycles despite the severe mechanical stress. A porous SiO2/TiO2 composite film as an anode for Li-ion batteries is achieved via a plasma electrolytic oxidation process, containing amorphous/anatase/rutile TiO2 and well-distributed amorphous SiO2. It exhibits a noticeably high capacity (more than 700 µAh cm‒2 at 100 µA cm‒2) and stable capacity retention (over 250 cycles) with excellent cycle performance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201703538

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.