3 years ago

Molecular Self-Assembly Driven by On-Surface Reduction: Anthracene and Tetracene on Au(111)

Molecular Self-Assembly Driven by On-Surface Reduction: Anthracene and Tetracene on Au(111)
Justus Krüger, Robin Ohmann, Gianaurelio Cuniberti, Dmitry Skidin, Jörg Meyer, Enrique Guitián, Frank Eisenhut, Francesca Moresco, Diego Peña, José M. Alonso, Dolores Pérez, Dmitry A. Ryndyk, Thomas Lehmann
Epoxyacenes adsorbed on metal surfaces form acenes during thermally induced reduction in ultrahigh vacuum conditions. The incorporation of oxygen bridges into a hydrocarbon backbone leads to an enhanced stability of these molecular precursors under ambient condition; however, it has also a distinct influence on their adsorption and self-assembly on metal surfaces. Here, a low-temperature scanning tunneling microscopy (LT-STM) study of two different epoxyacenes on the Au(111) surface at submonolayer coverage is presented. Both molecules show self-assembly based on hydrogen bonding. While for the molecules with a single epoxy moiety nanostructures of three molecules are formed, extended molecular networks are achieved with two epoxy moieties and a slightly higher surface coverage. Upon annealing at 390 K, the molecules are reduced to the respective acene; however, both systems keep a similar assembled structure. The experimental STM images supported by theoretical calculations show that the self-assembly of the on-surface fabricated acenes is greatly influenced by the on-surface reaction and strongly differs from the adsorption pattern of directly deposited acenes, highlighting the importance of the cleaved oxygen in the self-assembly.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06131

DOI: 10.1021/acs.jpcc.7b06131

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.