5 years ago

Molecular chaperones inject energy from ATP hydrolysis into the non-equilibrium stabilisation of native proteins

P., B., De Los Rios, Fauvet, Barducci, Goloubinoff, A., Sassi
Protein homeostasis, namely the ensemble of cellular mechanisms collectively controlling the activity, stability and conformational states of proteins, depends on energy-consuming processes. De novo protein synthesis requires ATP hydrolysis for peptide bond formation. Controlled degradation by the chaperone-gated proteases requires ATP hydrolysis to unfold target proteins and render their peptide bonds accessible to hydrolysis. During and following translation, different classes of molecular chaperones require ATP hydrolysis to control the conformational state of proteins, favor their folding into their active conformation and avoid, under stress, their conversion into potentially harmful aggregates. Furthermore, specific ATP-fueled unfolding chaperones can dynamically revert aggregation itself. We used here various biochemical assays and physical modeling to show that both bacterial chaperones GroEL (HSP60) and DnaK (HSP70) can use the energy liberated by ATP hydrolysis to maintain proteins in their active state even under conditions that do not favor, thermodynamically, the native state. The energy from ATP hydrolysis is thus injected by the chaperones in the system and converted into an enhanced, non-equilibrium steady-state stabilization of the native state of their substrates. Upon ATP consumption, the chaperone substrates spontaneously revert to their equilibrium non-native state.

Publisher URL: http://biorxiv.org/cgi/content/short/146852v1

DOI: 10.1101/146852

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.