5 years ago

Redox-Based Photostabilizing Agents in Fluorescence Imaging: The Hidden Role of Intersystem Crossing in Geminate Radical Ion Pairs

Redox-Based Photostabilizing Agents in Fluorescence Imaging: The Hidden Role of Intersystem Crossing in Geminate Radical Ion Pairs
Viktorija Glembockyte, Gonzalo Cosa
Here we report transient absorption studies on the ground-state recovery dynamics of the single-molecule fluorophore Cy3B in the presence of four different photostabilizing agents, namely β-mercaptoethanol (β-ME), Trolox (TX), n-propyl gallate (n-PG), and ascorbic acid (AA). These are triplet-state quenchers that operate via photoinduced electron transfer (PeT). While quantitative geminate recombination was recorded following PeT for β-ME (∼100%), for Trolox, n-propyl gallate, and ascorbic acid the extent of geminate recombination was >48%, >27%, and >13%, respectively. The results are rationalized in terms of the rates of intersystem crossing (ISC) in the newly formed geminate radical ion pairs (GRIPs). Rapid spin relaxation in the radicals formed accounts for quantitative geminate recombination with β-ME and efficient geminate recombination with TX. Our results illustrate how the interplay of PeT quenching efficiency and geminate recombination dynamics may lead to improved photostabilization strategies, critical for single-molecule fluorescence and super-resolution imaging.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b08134

DOI: 10.1021/jacs.7b08134

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.