3 years ago

Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model

Raymond McKay, Wenbin Mao, Wei Sun, Andrés Caballero, Charles Primiano

by Wenbin Mao, Andrés Caballero, Raymond McKay, Charles Primiano, Wei Sun

In this study, we present a fully-coupled fluid-structure interaction (FSI) framework that combines smoothed particle hydrodynamics (SPH) and nonlinear finite element (FE) method to investigate the coupled aortic and mitral valves structural response and the bulk intraventricular hemodynamics in a realistic left ventricle (LV) model during the entire cardiac cycle. The FSI model incorporates valve structures that consider native asymmetric leaflet geometries, anisotropic hyperelastic material models and human material properties. Comparison of FSI results with subject-specific echocardiography data demonstrates that the SPH-FE approach is able to quantitatively predict the opening and closing times of the valves, the mitral leaflet opening and closing angles, and the large-scale intraventricular flow phenomena with a reasonable agreement. Moreover, comparison of FSI results with a LV model without valves reveals substantial differences in the flow field. Peak systolic velocities obtained from the FSI model and the LV model without valves are 2.56 m/s and 1.16 m/s, respectively, compared to the Doppler echo data of 2.17 m/s. The proposed SPH-FE FSI framework represents a further step towards modeling patient-specific coupled LV-valve dynamics, and has the potential to improve our understanding of cardiovascular physiology and to support professionals in clinical decision-making.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0184729

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.