Loss of SPRR3 in <i>ApoE</i><sup>-/-</sup> mice leads to atheroma vulnerability through Akt dependent and independent effects in VSMCs
by Caressa D. Lietman, Amanda K. Segedy, Bin Li, Sergio Fazio, James B. Atkinson, MacRae F. Linton, Pampee P. Young
Vascular smooth muscle cells (VSMCs) represent important modulators of plaque stability in advanced lesions. We previously reported that loss of small proline-rich repeat protein 3 (Sprr3), leads to VSMC apoptosis in a PI3K/Akt-dependent manner and accelerates lesion progression. Here, we investigated the role of Sprr3 in modulating plaque stability in hyperlipidemic ApoE-/- mice. We show that loss of Sprr3 increased necrotic core size and reduced cap collagen content of atheromas in brachiocephalic arteries with evidence of plaque rupture and development of intraluminal thrombi. Moreover, Sprr3-/-ApoE-/- mice developed advanced coronary artery lesions accompanied by intraplaque hemorrhage and left ventricle microinfarcts. SPRR3 is known to reduce VSMC survival in lesions by promoting their apoptosis. In addition, we demonstrated that Sprr3-/- VSMCs displayed reduced expression of procollagen in a PI3K/Akt dependent manner. SPRR3 loss also increased MMP gelatinase activity in lesions, and increased MMP2 expression, migration and contraction of VSMCs independently of PI3K/Akt. Consequently, Sprr3 represents the first described VSMC modulator of each of the critical features of cap stability, including VSMC numbers, collagen type I synthesis, and protease activity through Akt dependent and independent pathways.Publisher URL: http://journals.plos.org/plosone/article
DOI: 10.1371/journal.pone.0184620
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.