5 years ago

Refractory Plasmonics without Refractory Materials

Refractory Plasmonics without Refractory Materials
Gelon Albrecht, Harald Giessen, Stefan Kaiser, Mario Hentschel
Refractory plasmonics deals with metallic nanostructures that can withstand high temperatures and intense laser pulses. The common belief was that refractory materials such as TiN are necessary for this purpose. Here we show that refractory plasmonics is possible without refractory materials. We demonstrate that gold nanostructures which are overcoated with 4 and 40 nm Al2O3 (alumina) by an atomic layer deposition process or by thick IC1-200 resist can withstand temperatures of over 800 °C at ambient atmospheric conditions. Furthermore, the alumina-coated structures can withstand intense laser radiation of over 10 GW/cm2 at ambient conditions without damage. Thus, it is possible to combine the excellent linear and nonlinear plasmonic properties of gold with material properties that were believed to be only possible with the lossier and less nonlinear refractory materials.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b03303

DOI: 10.1021/acs.nanolett.7b03303

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.