5 years ago

Reassessing Graphene Absorption and Emission Spectroscopy

Reassessing Graphene Absorption and Emission Spectroscopy
Grigory Kolesov, Eric J. Heller, Yuan Yang, Lucas Kocia
We present a new paradigm for understanding optical absorption and hot electron dynamics experiments in graphene. Our analysis pivots on assigning proper importance to phonon-assisted indirect processes and bleaching of direct processes. We show indirect processes figure in the excess absorption in the UV region. Experiments which were thought to indicate ultrafast relaxation of electrons and holes, reaching a thermal distribution from an extremely nonthermal one in under 5–10 fs, instead are explained by the nascent electron and hole distributions produced by indirect transitions. These need no relaxation or ad-hoc energy removal to agree with the observed emission spectra and fast pulsed absorption spectra. The fast emission following pulsed absorption is dominated by phonon-assisted processes, which vastly outnumber direct ones and are always available, connecting any electron with any hole any time. Calculations are given, including explicitly calculating the magnitude of indirect processes, supporting these views.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02500

DOI: 10.1021/acs.nanolett.7b02500

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.