4 years ago

Synchrotron X-ray characterization of crack strain fields in polygranular graphite

Synchrotron X-ray characterization of crack strain fields in polygranular graphite
The strain field of a crack in polygranular isotropic nuclear graphite, a quasi-brittle material, has been studied during stable fracture propagation. Synchrotron X-ray computed tomography and strain mapping by diffraction were combined with digital volume correlation and phase congruency image analysis to extract the full field displacements and elastic crystal strains. The measured displacement fields have been analysed using a Finite Element method to extract the elastic strain energy release rate as a J-integral. Non-linear properties described the effect of microcracking on the elastic modulus in the fracture process zone. The analysis was verified by the good agreement of the predicted and measured elastic strain fields when using the non-linear model. The intrinsic critical elastic strain energy release rate for mode I crack propagation is approximately 200 J m−2.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317308709

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.