5 years ago

Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference

Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference
Converting body heat into electricity using flexible thermoelectric generators can be useful for self-powered wearable electronic devices. However, the temperature difference that can be obtained by body heat is insufficient, which limits its practical applications. In this study, we present a wearable solar thermoelectric generator driven by a significantly high temperature difference created by introducing a local solar absorber and thermoelectric legs on a polyimide substrate. The solar absorber is a five-period Ti/MgF2 superlattice, in which the structure and thickness of each layer was designed for optimal absorption of sunlight. The thermoelectric legs were prepared by dispenser printing with an ink consisting of mechanically alloyed BiTe-based powders and an Sb2Te3-based sintering additive dispersed in glycerol. Thermoelectric p- and n-type legs have electrical conductivities of ~ 25000Sm−1 with Seebeck coefficients of 166.37 and −116.38 μV K−1, respectively. When exposed to sunlight, a wearable solar thermoelectric generator comprising 10 pairs of p-n legs has an open-circuit voltage of 55.15mV and an output power of 4.44 μW. The temperature difference is as high as 20.9°C, which is much higher than the typical temperature differences of 1.5 to 4.1°C of wearable thermoelectric generators driven by body heat. The wearable solar thermoelectric generators have been demonstrated on various surfaces exposed to sunlight, such as clothes or windows.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517305359

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.