5 years ago

Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors

Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors
Breast cancer resistant protein (BCRP/ABCG2), a 72 kDa plasma membrane transporter protein is a member of ABC transporter superfamily. Increased expression of BCRP causes increased efflux and therefore, reduced intracellular accumulation of many unrelated chemotherapeutic agents leading to multidrug resistance (MDR). A series of 31 benzamide and phenyltetrazole derivatives with amide and urea linkers has been synthesized to serve as potential BCRP inhibitors in order to overcome BCRP-mediated MDR. The target derivatives were tested for their cytotoxicity and reversal effects in human non-small cell lung cancer cell line H460 and mitoxantrone resistant cell line H460/MX20 using the MTT assay. In the benzamide series, compounds 6 and 7 exhibited a fold resistance of 1.51 and 1.62, respectively at 10 µM concentration which is similar to that of FTC, a known BCRP inhibitor. Compounds 27 and 31 were the most potent analogues in the phenyltetrazole series with amide linker with a fold resistance of 1.39 and 1.32, respectively at 10 µM concentration. For the phenyltetrazole series with urea linker, 38 exhibited a fold resistance of 1.51 which is similar than that of FTC and is the most potent compound in this series. The target compounds did not exhibit reversal effect in P-gp overexpressing resistant cell line SW620/Ad300 suggesting that they are selective BCRP inhibitors.

Publisher URL: www.sciencedirect.com/science

DOI: S0960894X17308909

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.