3 years ago

3D Quantitative Chemical Imaging of Tissues by Spectromics

3D Quantitative Chemical Imaging of Tissues by Spectromics
Cyril Petibois

Mid-infrared (IR), Raman, and X-ray fluorescence (XRF) spectroscopy methods, as well as mass spectrometry (MS), can be used for 3D chemical imaging. These techniques offer an invaluable opportunity to access chemical features of biological samples in a nonsupervised way. The global chemical information they provide enables the exploitation of a large array of chemical species or parameters, so-called ‘spectromics'. Extracting chemical data from spectra is critical for the high-quality chemical analysis of biosamples. Furthermore, these are the only currently available techniques that can quantitatively analyze tissue content (e.g., molecular concentrations) and substructures (e.g., cells or blood vessels). The development of chemical-derived biological metadata appears to be a new way to exploit spectral information with machine learning algorithms.

Publisher URL: http://www.cell.com/trends/biotechnology/fulltext/S0167-7799(17)30206-8

DOI: 10.1016/j.tibtech.2017.08.002

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.