3 years ago

3D in-situ hollow carbon fiber/carbon nanosheet/Fe3C@Fe3O4 by solventless one-step synthesis and its superior supercapacitor performance

3D in-situ hollow carbon fiber/carbon nanosheet/Fe3C@Fe3O4 by solventless one-step synthesis and its superior supercapacitor performance
Herein, 3D in-situ hollow carbon fiber/carbon nanosheet/Fe3C@Fe3O4 (h-CNF/CNS/Fe3C@Fe3O4) was constructed using ferrocene and oleic acid by a solventless one-step process that did not require additional filtering, neutralization, drying, or calcination steps. The iron-oleate chelating structure that self-assembled during annealing facilitated the fabrication of 3D in-situ h-CNF/CNS/Fe3C@Fe3O4 by undergoing graphitization at 600°C. This carbon shell of the 3D in-situ h-CNF/CNS/Fe3C@Fe3O4 was derived from the two cyclopentadienyl rings in ferrocene. This hybrid material made from economically cheap oleic acid exhibited superior supercapacitive behavior: high specific capacitance of 327Fg−1 at 5mVs−1 and 210Fg−1 at 10mVs−1, good rate capability of 60Fg−1 at 10Ag−1 (compared to 70Fg−1 at 1Ag−1 for pure Fe3O4), and superior retention of 108% after 6000 cycles at 100mVs−1. These superior supercapacitive properties were ascribed to the 3D graphitic h-CNF/CNS for enhancing electrical conductivity and the carbonaceous shell over Fe3C@Fe3O4 core for buffering the bulk expansion of iron-related particles.

Publisher URL: www.sciencedirect.com/science

DOI: S001346861731873X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.