5 years ago

Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals

Aspergillus fumigatus R1, on submerged fermentation using agricultural residues as carbon source produced extracellular xylanase (152IU/ml after 96h of incubation at 37°C with constant shaking at 100rpm). A maximum yield of 1gm% Xylooligosaccharides (XOS) mixture was obtained after 12h by enzymatic hydrolysis of xylan rich wheat husk without any prior pretreatment using the crude enzyme without any purification. HP-TLC data confirmed the presence of an array of XOS for its prebiotic properties by carrying out studies on ten standard probiotic cultures. Six of ten probiotic cultures were able to utilize XOS produced from agricultural wastes and showed remarkable growth in the media containing XOS as the sole source of carbon. XOS mixture also exhibited concentration dependent anti-oxidant activity. Thus, the results showed that XOS produced from agricultural residues have great prebiotic potential and good antioxidant activity; therefore, it can be used in food-related applications.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417314888

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.