5 years ago

Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water

Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water
The persistence of hollow centre in the carbon obtained from milkweed floss provides exceptional sorption characteristics, not seen in common biomasses or their derivatives. A considerably high sorption of 320mg of lead per gram of milkweed carbon was achieved without any chemical modification to the biomass. In this research, we have carbonized milkweed floss and used the carbon as a sorbent for lead in waste water. A high surface area of 170m2 g−1 and pore volume of 1.07cm3 g−1 was seen in the carbon. Almost complete removal (>99% efficiency) of lead could be achieved within 5min when the concentration of lead in the solution was 100ppm, close to that prevailing in industrial waste water. SEM images showed that the carbon was hollow and confocal images confirmed that the sorbate could penetrate inside the hollow tube.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417314554

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.