3 years ago

Identification of hotspots for NO and N2O production and consumption in counter- and co-diffusion biofilms for simultaneous nitrification and denitrification

Identification of hotspots for NO and N2O production and consumption in counter- and co-diffusion biofilms for simultaneous nitrification and denitrification
A membrane-aerated biofilm reactor (MABR) provides a counter-current substrate diffusion geometry in which oxygen is supplied from a gas-permeable membrane on which a biofilm is grown. This study hypothesized that an MABR would mitigate NO and N2O emissions compared with those from a conventional biofilm reactor (CBR). Two laboratory-scale reactors, representing an MABR and CBR, were operated by feeding synthetic industrial wastewater. The surficial nitrogen removal rate for the MABR [4.51±0.52g-N/(m2 day)] was higher than that for the CBR [3.56±0.81g-N/(m2 day)] (p <0.05). The abundance of β-proteobacterial ammonia-oxidizing bacteria in the MABR biofilm aerobic zone was high. The NO and N2O concentrations at the biofilm–liquid interface in the MABR were 0.0066±0.0014 and 0.01±0.0009mg-N/L, respectively, two and 28 times lower than those in the CBR. The NO and N2O production hotspots were closely located in the MABR aerobic zone.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417313561

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.