5 years ago

Control of ice growth and recrystallization by sulphur-doped oxidized quasi-carbon nitride quantum dots

Control of ice growth and recrystallization by sulphur-doped oxidized quasi-carbon nitride quantum dots
Carbonaceous particles, as one of the main sources of atmospheric aerosols, have great influence on the climate change, such as ice formation, precipitation and polar ice melting. Because sulphur-containing emissions can significantly affect the chemical compositions and properties of carbonaceous particles through various aging processes, it is critical to investigate the influence of sulphur-doped carbon materials on ice formation. Here, we synthesized a sulphur-doped carbon nanomaterial–sulphur-doped oxidized quasi-carbon nitride quantum dots (S-OCNQDs), and investigated the influence of chemical structure on ice growth and recrystallization. The experimental results show that the S-OCNQDs can inhibit ice growth/recrystallization. In addition, we found that forming more hydrogen-bonds with ice contributes to enhancing the efficiency of ice growth/recrystallization inhibition and that heteroatom-doping is a promising way to regulate the ice growth/recrystallization. This work correlates the specific chemical structures of carbon nanomaterials with their performance in inhibiting ice growth/recrystallization through their density of hydrogen-bonds formed with ice. It is instructive for understanding the effect of sulphur-doping on ice formation as well as the design of efficient anti-icing materials.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317308485

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.