3 years ago

Placentome Nutrient Transporters and Mammalian Target of Rapamycin Signaling Proteins Are Altered by the Methionine Supply during Late Gestation in Dairy Cows and Are Associated with Newborn Birth Weight.

Pan YX, Wang L, Loor JJ, Batistel F, Cardoso FC, Alharthi AS, Parys C
Background: To our knowledge, most research demonstrating a link between maternal nutrition and both fetal growth and offspring development after birth has been performed with nonruminants. Whether such relationships exist in large ruminants is largely unknown.Objective: We aimed to investigate whether increasing the methionine supply during late pregnancy would alter uteroplacental tissue nutrient transporters and mammalian target of rapamycin (mTOR) and their relation with newborn body weight.Methods: Multiparous Holstein cows were used in a randomized complete block design experiment. During the last 28 d of pregnancy, cows were fed a control diet or the control diet plus ethylcellulose rumen-protected methionine (0.9 g/kg dry matter intake) (Mepron; Evonik Nutrition & Care GmbH) to achieve a 2.8:1 ratio of lysine to methionine in the metabolizable protein reaching the small intestine. We collected placentome samples at parturition and used them to assess mRNA and protein expression and the phosphorylation status of mTOR pathway proteins.Results: Newborn body weight was greater in the methionine group than in the control group (44.1 kg and 41.8 kg, respectively; P ≤ 0.05). Increasing the methionine supply also resulted in greater feed intake (15.8 kg/d and 14.6 kg/d), plasma methionine (11.9 μM and 15.3 μM), and plasma insulin (1.16 μg/L and 0.81 μg/L) in cows during late pregnancy. As a result, mRNA expression of genes involved in neutral amino acid transport [solute carrier (SLC) family members SLC3A2, SLC7A5, SLC38A1, and SLC38A10], glucose transport [SLC2A1, SLC2A3, and SLC2A4], and the mTOR pathway [mechanistic target of rapamycin and ribosomal protein S6 kinase B1] were upregulated (P ≤ 0.07) in methionine-supplemented cows. Among 6 proteins in the mTOR pathway, increasing the methionine supply led to greater (P ≤ 0.09) protein expression of α serine-threonine kinase (AKT), phosphorylated (p)-AKT, p-eukaryotic elongation factor 2, and the p-mTOR:mTOR ratio.Conclusion: Supplemental methionine during late gestation increases feed intake and newborn body weight in dairy cows, and this effect may be mediated by alterations in the uteroplacental transport of nondispensable and dispensable amino acids and glucose at least in part through changes in gene transcription and mTOR signaling.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28768834

DOI: PubMed:28768834

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.