3 years ago

Mitigation of the inhibitory effects of co-existing substances on the Fenton process by UV light irradiation

Kosuke Muramatsu, Masahiro Tokumura, Qi Wang, Yuichi Miyake, Takashi Amagai, Masakazu Makino
Co-existing substances (substances not targeted for degradation) can negatively affect wastewater treatment process performance. Here, we quantitatively evaluated the effects of propanal, a common co-existing substance, on the degradation of the azo-dye Orange II, a common pollutant, by the Fenton process to provide data for the development of measures to reduce the effects of co-existing substances on this wastewater treatment process. Inhibition rate (IR; ratio of the reaction rate constants obtained in the absence and presence of propanal) was calculated to examine the effects of propanal on the degradation of Orange II. The IRs for the Fenton process in the first phase and the second phase were 1.6 and 4.2, respectively. However, addition of ultraviolet irradiation to the Fenton process (i.e., the photo-Fenton process) resulted in a comparable IR for the first phase but a markedly lower IR for the second phase. We attributed this to the improvement of the photo-reduction reaction rate due to complexation of propanal with ferric ions, which compensated for the scavenger effects (the trapping of OH radicals) of propanal. Thus, ultraviolet irradiation reduced the inhibitory effects of propanal on the degradation of Orange II by the Fenton process.

Publisher URL: https://www.tandfonline.com/doi/full/10.1080/10934529.2020.1737460

DOI: 10.1080/10934529.2020.1737460

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.