3 years ago

Quantitative structure–activity relationship methods in the discovery and development of antibacterials

Quantitative structure–activity relationship methods in the discovery and development of antibacterials
Beatriz Suay-Garcia, Jose Ignacio Bueso-Bordils, Antonio Falcó, María Teresa Pérez-Gracia, Gerardo Antón-Fos, Pedro Alemán-López

With the pressing issue of antibiotic resistance, there is a constant need for new antibiotics. However, the fact that traditional methods of drug discovery are expensive and time‐consuming has discouraged the pharmaceutical industry, leaving the burden of discovery to research institutions. This is where quantitative structure–activity relationship (QSAR) methods become a key tool in fighting multidrug‐resistant bacteria, seeing as they provide useful information for the rational design of new active molecules at a minimal cost. A variety of linear and nonlinear statistical methods are used to develop these models based on the 2D or 3D representations of the molecules. QSAR models have proven to be effective in rapidly providing lead compound candidates against resistant bacteria such as methicillin‐resistant Staphylococcus aureus, Escherichia coli, Pseudomonas spp., Bacillus subtilis, or Mycobacterium tuberculosis. Moreover, QSAR methods allow for a deeper analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles. The information obtained from QSAR studies makes optimizing an existing drug simpler, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria.

This article is categorized under:

  •   Computer and Information Science > Chemoinformatics
  •   Software > Molecular Modeling
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.