3 years ago

Investigation of structural, elastic, thermophysical, magneto‐electronic, and transport properties of newly tailored Mn‐based Heuslers: A density functional theory study

Investigation of structural, elastic, thermophysical, magneto‐electronic, and transport properties of newly tailored Mn‐based Heuslers: A density functional theory study
Shakeel Ahmad Sofi, Dinesh C. Gupta

Self‐consistent ab‐initio calculations with highly precise spin‐polarized, density functional theory have been performed for the first time, to investigate the electronic structure, magnetism, transport, elasto‐mechanical, and thermophysical properties of newly tailored Mn‐based full‐Heuslers. The cohesive and ground‐state energy calculations in ferromagnetic, nonmagnetic, and antiferromagnetic states confirm the stability of materials in face‐centered ferromagnetic configuration. The spin‐based band structure analysis is well defined by modified Becke‐Johnson potential with the occurrence of half‐metallic character along the Fermi level. Estimation of elastic parameters is used to check the mechanical stability and nature of forces occurring in materials, where we see the alloys display ductile nature along with a Debye temperature of 398.75 K for Mn2NbAl, 337.53 K for Mn2NbGa, and 360.52 K for Mn2NbIn. Furthermore, within the solution of Boltzmann theory, thermoelectric efficient parameters address its applications in energy harvesting and solid‐state device applications. Thermodynamic potentials have been keenly predicted by implementing quasi harmonic Debye model to descript its stability at high temperature and pressure varying conditions. The prediction of ground state and thermodynamic properties from extensive first‐principles calculations could be beneficial for its future experimental insights with intriguing applications. Hence, the overall theme from the current study creates an application stand in spintronics, power generation, as well as green energy sources for future technologies.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.