3 years ago

Thermally-stable high coercivity Ce-substituted hot-deformed magnets with 20% Nd reduction

Thermally-stable high coercivity Ce-substituted hot-deformed magnets with 20% Nd reduction
Xin Tang, S.Y. Song, J. Li, H. Sepehri-Amin, T. Ohkubo, K. Hono

We demonstrate a 20% Ce-substituted Nd-Fe-B hot-deformed magnet with a large coercivity (µ0Hc) of 1.69 T and a remanent magnetization of 1.32 T, which are comparable to those for Nd-Fe-B sintered magnets. The temperature coefficient of coercivity (β) of the Ce-substituted magnet was -0.593%/°C in the range of 27–127°C, which is superior to that of a Nd-Fe-B sintered magnet (β = -0.669%/°C) with a comparable coercivity at room temperature. Furthermore, the coercivity and its thermal stability can be increased to µ0Hc =1.83 T and β = -0.51 %/°C by applying the Nd80Cu20 eutectic grain boundary diffusion process to an optimized (Nd0.75Ce0.25)-Fe-B hot-deformed sample. A coercivity of 0.74 T was achieved at 150°C in the Nd-Cu diffusion processed hot-deformed magnets, which is much higher than that of sintered magnets. Microstructure investigations and micromagnetic simulations indicate that the modification of grain boundary phase and formation of a Nd-rich shell near the grain boundaries of the developed (Nd,Ce)-Fe-B hot-deformed magnet is the cause of the improved coercivity at room temperature. Thus, in this work, we realize a microstructure-optimized low-cost (Nd0.8Ce0.2)-Fe-B hot-deformed magnet that can outperform Nd-Fe-B sintered magnets.

Publisher URL: https://www.sciencedirect.com/science/article/pii/S1359645420302044

DOI: 10.1016/j.actamat.2020.03.017

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.