3 years ago

Analytical Study of Laminar Boundary Layers near Blunted Bodies

V. N. Bulgakov, V. P. Kotenev, Iu. S. Ozhgibisova
In high-speed flows, blunt body elements having an irregular shape due to which gas dynamic parameters undergo significant changes are, as a rule, the most thermally loaded parts. In this respect, a quick evaluation of the thermal load on blunt bodies is important. Laminar boundary-layer equations given in special coordinates in a constant axisymmetric flow of a compressible perfect gas are considered. The adhesion condition is accepted as a boundary condition on the wall and it is assumed that the speed and temperature on the boundary correspond to the values of the external flow. The Pohlhausen method introduces the concepts of the displacement thickness and momentum thickness, finds relations between these values and the boundary-layer thickness, and derives a differential equation to determine the boundary-layer form parameter such that all other characteristics of the boundary layer are determined via it. The Pohlhausen method is modified in order to simplify the calculation by excluding the differential equations from it. Similarly to the velocity, a special function including the enthalpy and dimensionless kinetic parameter to be determined is introduced as a biquadratic polynomial. The boundary conditions on the wall and on the border of the boundary layer are used to determine the polynomial coefficients. The kinetic parameter is defined in different ways for bodies of various shapes. We provide the results of applying the proposed method for the calculation of heat flux that have been analyzed numerically (in various papers) in complete systems of Navier-Stokes and Prandtl equations. The comparison of the results shows the efficiency of the proposed method.

Publisher URL: http://link.springer.com/article/10.1134/S2070048220010032

DOI: 10.1134/S2070048220010032

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.