3 years ago

Anisotropic Nonlocal Diffusion Operators for Normal and Anomalous Dynamics

Weihua Deng, Xudong Wang, Pingwen Zhang
The Laplacian is the infinitesimal generator of isotropic Brownian motion, being the limit process of normal diffusion, while the fractional Laplacian serves as the infinitesimal generator of the limit process of isotropic Lévy process. Taking limit, in some sense, means that the operators can approximate the physical process well after sufficient long time. We introduce the nonlocal operators (being effective from the starting time), which describe the general processes undergoing anisotropic normal diffusion. For anomalous diffusion, we extend to the anisotropic fractional Laplacian and the tempered one in . Their definitions are proved to be equivalent to an alternative one in Fourier space. Based on these new anisotropic diffusion operators, we further derive the deterministic governing equations of some interesting statistical observables of the very general jump processes with multiple internal states. Finally, we consider the associated initial and boundary value problems and prove their well-posedness of the Galerkin weak formulation in . To obtain the coercivity, we claim that the probability density function should be nondegenerate.

Publisher URL: https://epubs.siam.org/doi/abs/10.1137/18M1184990

DOI: 10.1137/18M1184990

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.